The Best American Science & Nature Writing 2001 (The Best American Series). Edward O Wilson

The Best American Science & Nature Writing 2001 (The Best American Series)



Download The Best American Science & Nature Writing 2001 (The Best American Series)



The Best American Science & Nature Writing 2001 (The Best American Series) Edward O Wilson. pdf ebook Publisher: Mariner Books Language: English Page: 272 ISBN: 0618153594, 9780618153596

About the Author

Edward O. Wilson is the author of two Pulitzer Prize-winning books, On Human Nature and The Ants, as well as the recipient of many fellowships, honors, and awards, including the 1977 National Medal of Science. His most recent book is Consilience.

Burkhard Bilger is a senior editor at DISCOVER magazine and a former editor for THE SCIENCES. He is completing a book of essays on the South for Scribner's,based on an article that appeared in Harper's. He has written many articles for The Atlantic Monthly, Harper's, The New York Times, and other periodicals.

Excerpt. © Reprinted by permission. All rights reserved.

Introduction: Life Is a Narrative Let me tell you a story. It is about two ants. In the early 1960s, when I was a young professor of zoology at Harvard University, one of the vexing mysteries of evolution was the origin of ants. That was far from a trivial problem in science. Ants are the most abundant of insects, the most effective predators of other insects, and the busiest scavengers of small dead animals. They transport the seeds of thousands of plant species, and they turn and enrich more soil than earthworms. In totality (they number roughly in the million billions and weigh about as much as all of humanity), they are among the key players of Earth’s terrestrial environment. Of equal general interest, they have attained their dominion by means of the most advanced social organization known among animals.
I had chosen these insects for the focus of my research. It was the culmination of a fascination that dated back to childhood. Now, I spent a lot of time thinking about how they came to be. At first the problem seemed insoluble, because the oldest known ants, found in fossil deposits up to 57 million years old, were already advanced anatomically. In fact, they were quite similar to the modern forms all about us. And just as today, these ancient ants were among the most diverse and abundant of insects. It was as though an opaque curtain had been lowered to block our view of everything that occurred before. All we had to work with was the tail end of evolution.
Somewhere in the world the Ur-ants awaited discovery. I had many conversations with William L. Brown, a friend and fellow myrmecologist, about where the missing links might turn up and what traits they possess that could reveal their ancestry among the nonsocial wasps. We guessed that they first appeared in the late Mesozoic era, 65 million or more years ago, far back enough to have stung and otherwise annoyed the last of the dinosaurs. We were not willing to accept the alternative hypothesis favored by some biblical creationists, that ants did not evolve at all but appeared on Earth full-blown.
Because well-preserved fossils had already been collected by the tens of thousands from all around the northern hemisphere over a period of two centuries without any trace of the Ur-species, I was afraid I would never see one in my lifetime. Then, as so often happens in science, a chance event changed everything. One Sunday morning in 1967, a middle-aged couple, Mr. and Mrs. Edmund Frey, were strolling along the base of the seaside bluffs at Cliffwood Beach, New Jersey, collecting bits of fossilized wood and amber from a thin layer of clay freshly exposed by a storm the day before. They were especially interested in the amber, which are jewel-like fragments of fossil tree sap. In one lump they rescued, clear as yellow glass, were two beautifully preserved ants. At first, that might have seemed nothing unusual: museums, including the one at Harvard, are awash in amber ants. What made these specimens important, however, was their age: about 90 million years, from the middle of the Cretaceous period, Mesozoic era, in the Age of Dinosaurs.
The Freys were willing to share their find, and soon the two specimens found their way to me for examination. There they came close to disaster. As I nervously fumbled the amber piece out of its mailing box I dropped it to the floor, where it broke into two halves. Luck stayed with me, however. The break was as clean as though made by a jeweler, and each piece contained an undamaged specimen. Within minutes I determined that the ants were the long- sought Holy Grail of ant paleontology, or at least very close to it. Brown and I later formally placed them in a new genus, Sphecomyrma freyi (literally, “Frey’s wasp ant”). They were more primitive than all other known ants, living and fossil. Moreover, in a dramatic confirmation of evolution as a predictive theory, they possessed most of the intermediate traits that according to our earlier deductions should connect modern ants to the nonsocial wasps.
As a result of the discovery, other entomologists intensified their search, and many more ant fossils of Mesozoic age were soon found. Originating from deposits in New Jersey, Canada, Siberia, and Brazil, they compose a mix of primitive and more advanced species. Bit by bit, they have illuminated the history of ants from near the point of origin over 100 million years ago to the start of the great radiative spread that created the modern fauna.
Science consists of millions of stories like the finding of New Jersey’s dawn ants. These accounts, some electrifying, most pedestrian, become science when they can be tested and woven into cause-and-eeffect explanations to become part of humanity’s material worldview. Science, like the rest of culture, is based on the manufacture of narrative..... That is entirely natural, and in a profound sense it is a Darwinian necessity. We all live by narrative, every day and every minute of our lives. Narrative is the human way of working through a chaotic and unforgiving world bent on reducing our bodies to malodorous catabolic molecules. It delays the surrender of our personal atoms and compounds back to the environment for the assembly of more humans, and ants.
By narrative we take the best stock we can of the world and our predicament in it. What we see and recreate is seldom the blinding literal truth. Instead, we perceive and respond to our surroundings in narrow ways that most benefit our organismic selves. The narrative genius of Homo sapiens is an accommodation to the inherent inability of the three pounds of our sensory system and brain to process more than a minute fraction of the information the environment pours into them. In order to keep the organism alive, that fraction must be intensely and accurately selective. The stories we tell ourselves and others are our survival manuals.
With new tools and models, neuroscientists are drawing close to an understanding of the conscious mind as narrative generator. They view it as an adaptive flood of scenarios created continuously by the working brain. Whether set in the past, present, or future, whether fictive or reality based, the free-running constructions are our only simulacrum of the world outside the brain. They are everything we will ever possess as individuals. And, minute by minute, they determine whether we live or die.
The present in particular is constructed from sensations very far in excess of what can be put into the simulacrum. Working at a frantic pace, the brain summons memories -- past scenarios -- to help screen and organize the incoming chaos. It simultaneously creates imaginary scenarios to create fields of competing options, the process we call decision-making. Only a tiny fraction of the narrative fragments -- the focus -- is selected for higher-order processing in the prefrontal cortex. That segment constitutes the theater of running symbolic imagery we call the conscious mind.
During the story-building process, the past is reworked and returned to memory storage. Through repeated cycles of recall and supplementation the brain holds on to shrinking segments of the former conscious states. Across generations the most important among these fragments are communicated widely and converted into history, literature, and oral tradition. If altered enough, they become legend and myth. The rest disappear. The story I have just told you about Mesozoic ants is all true as best I can reconstruct it from my memory and notes. But it is only a little bit of the whole truth, most of which is beyond my retrieval no matter how hard I might try.
This brings me to the relation between science and literature. Science is not a subculture separate from that of literature. Its knowledge is the totality of what humanity can verify about the real world, testable by repeated experiment or factual observation, bound to related information by general principles, and - - this is the part most often missed -- ultimately subject to cause- and-effect explanations consilient across the full range of disciplines. The most democratic of human mental activity, it comprises the nonfiction stories you can take to the bank.
Everyone can understand the process of science, and, once familiar with a modest amount of factual information and the elementary terminology of particular disciplines, he or she can grasp the intuitive essence of at least some scientific knowledge. But the scientific method is not natural to the human mind. The phenomena it explicates are by and large unfamiliar to ordinary experience. New scientific facts and workable theories, the silver and gold of the scientific enterprise, come slow and hard, less like nuggets lying on a streambed than ore dug from mines. To enjoy them while maintaining an effective critical attitude requires mental discipline. The reason, again, is the innate constraints of the human brain. Gossip and music flow easily through the human mind, because the brain is genetically predisposed to receive them. Theirs is a Paleolithic cogency. Calculus and reagent chemistry, in contrast, come hard, like ballet on pointe. They have become relevant only in modern, postevolutionary times. Of the hundreds of fellow scientists I have known for more than fifty years, from graduate students to Nobelists, all generally prefer at random moments of their lives to listen to gossip and music rather than to scientific lectures. Trust me: physics is hard even for physicists. Somewhere on a distant planet, there may exist a species that hereditarily despises gossip and thrives on calculus. But I doubt it.
The central task of science writing for a broad audience is, in consequence, how to make science human and enjoyable without betraying nature. The best writers achieve that end by two means. They present the phenomena as a narrative, whether historical, evolutionary, or phenomenological, and they treat the scientists as p...